
DrawBot: Turning Bad Sketches into Beautiful Sketches
 

Problem Statement
How might we design and develop a deep learning 
application that takes as its input a rough (or badly) made 
sketch and transforms it into a drop-dead masterpiece? As 
designers, two of us have often struggled to bring our ideas 
to life in an aesthetically pleasing manner, while all three of 
us would dearly love to have a tool that makes it easy for us to 
churn out  beautiful  sketches. The input to our algorithm is 
a bad sketch of a face. We then use a MUNIT [1] network to 
output a much cleaner and aesthetically accurate image of a 
face. We found that while the model was able to learn large 
parameters (face shape and size), it was unable to learn finer 
details (nose shape, smiling/frowning). We believe that with 
better data, this model could be used to create more accurate 
sketches.

Results

Discussion + Future Work
Our model seemed to have learned some parameters from 
the input images (face size and shape) fairly well. However, 
it is unable to adjust finer details such as nose shape and 
smiling/frowning. We believe that the main inhibitor was 
the quality of the input drawings. If we had been able to 
use drawings with more detailed features (many of them 
lack noses, ears, hair, etc) we believe that this model could 
have learned those parameters as well. 

Data Collection
Source Images

“Bad sketches” 
collected from Google’s 
open-source Quick, 
Draw! Dataset [2]. We 
made a Python script to 
collect the data as 
images rather than 
vectorized 
representations.

Target Images

“Good” portrait 
sketches collected 
from the CUHK Face 
sketch database [3]. 
These images were 
cropped to 128x128 
pixel images and then 
fed into our model.

Model
We use Multimodal Unsupervised Image-to-Image 
Translation (MUNIT), which takes as input a source domain 
and target domain. The model creates a shared content space 
with features common between the two domains, as well as a 
style space for each domain with features unique to that 
domain. To translate an image from the source domain to the 
target domain, MUNIT combines the content code of the 
source with a randomly-selected style code of the target.

MUNIT’s auto-encoder architecture [1].

MUNIT’s Total Loss Function [1]
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Training results after 80,000 iterations of MUNIT. The 
model was trained on a set of 300 unpaired bad sketches 
and good sketches and tested on a set of 100 bad sketches 
from Quick, Draw!. This demonstrates the ability to 
create realistic sketches within the confines of the 
shapes given, but highlights trouble with specific 
features. 
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