
DrawBot: Turning Bad Sketches into Beautiful Sketches

Problem Statement
How might we design and develop a deep learning
application that takes as its input a rough (or badly) made
sketch and transforms it into a drop-dead masterpiece? As
designers, two of us have often struggled to bring our ideas
to life in an aesthetically pleasing manner, while all three of
us would dearly love to have a tool that makes it easy for us to
churn out beautiful sketches. The input to our algorithm is
a bad sketch of a face. We then use a MUNIT [1] network to
output a much cleaner and aesthetically accurate image of a
face. We found that while the model was able to learn large
parameters (face shape and size), it was unable to learn finer
details (nose shape, smiling/frowning). We believe that with
better data, this model could be used to create more accurate
sketches.

Results

Discussion + Future Work
Our model seemed to have learned some parameters from
the input images (face size and shape) fairly well. However,
it is unable to adjust finer details such as nose shape and
smiling/frowning. We believe that the main inhibitor was
the quality of the input drawings. If we had been able to
use drawings with more detailed features (many of them
lack noses, ears, hair, etc) we believe that this model could
have learned those parameters as well.

Data Collection
Source Images

“Bad sketches”
collected from Google’s
open-source Quick,
Draw! Dataset [2]. We
made a Python script to
collect the data as
images rather than
vectorized
representations.

Target Images

“Good” portrait
sketches collected
from the CUHK Face
sketch database [3].
These images were
cropped to 128x128
pixel images and then
fed into our model.

Model
We use Multimodal Unsupervised Image-to-Image
Translation (MUNIT), which takes as input a source domain
and target domain. The model creates a shared content space
with features common between the two domains, as well as a
style space for each domain with features unique to that
domain. To translate an image from the source domain to the
target domain, MUNIT combines the content code of the
source with a randomly-selected style code of the target.

MUNIT’s auto-encoder architecture [1].

MUNIT’s Total Loss Function [1]

References
[1] X. Huang, M.-Y. Liu, S. Belongie, and J. Kautz,
“Multimodal Unsupervised Image-to-Image
Translation,” arXiv:1804.04732 [cs, stat], Apr. 2018.
[2] J. Jongejan, H. Rowley, T. Kawashima, J. Kim, and N.
Fox-Gieg. The Quick, Draw! - A.I. Experiment.
https://quickdraw.withgoogle.com/, 2016
[3] X. Wang and X. Tang, “Face Photo-Sketch Synthesis
and Recognition,” IEEE Transactions on Pattern
Analysis and Machine Intelligence (PAMI), Vol. 31, 2009.

Training results after 80,000 iterations of MUNIT. The
model was trained on a set of 300 unpaired bad sketches
and good sketches and tested on a set of 100 bad sketches
from Quick, Draw!. This demonstrates the ability to
create realistic sketches within the confines of the
shapes given, but highlights trouble with specific
features.

Jimmie Harris
jdharris@stanford.edu

Tayo Falase
tfalase@stanford.edu

Usman Khaliq
usmank@stanford.edu

